Imagine that you’ve decided to organize your closet, but instead of measuring containers at a store to make sure they will work, you just go to your office, enter the measurements you want your containers to be, and print them out right there. Now imagine that you have to build a diorama of a famous Civil War battle for a project at school, and you use that same printer to construct all the soldiers, cannons and trees in perfect detail.
This technology may be closer than you think thanks to 3-D printing. 3-D printing is making it easier and faster to produce complex objects with multiple moving parts and intricate design, and soon it will be affordable enough to have at home.
Additive manufacturing (AM) is the family of manufacturing technology that includes 3-D printing. AM is the means of creating an object by adding material to the object layer by layer. AM is the current terminology established by ASTM International (formerly the American Society for Testing and Materials) [source: Gibson, et al.]. Throughout its history, additive manufacturing in general has gone by various names: stereolithography, 3-D layering and 3-D printing. This article uses 3-D printing because it seems to be the most common term used to describe AM products.
You can see some of the basic principles behind AM in caves; over thousands of years, dripping water creates layers and layers of mineral deposits, which accumulate to form stalagmites and stalactites. Unlike these natural formations, though, 3-D printing is much faster and follows a predetermined plan provided by computer software. The computer directs the 3-D printer to add each new layer as a precise cross-section of the final object.
Additive manufacturing and 3-D printing specifically, continues to grow. Technology that started out as a way to build fast prototypes is now a means of creating products for the medical, dental, aerospace and automotive industries. 3-D printing is also crossing over into toy and furniture manufacturing, art and fashion.